3.5.8 \(\int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \, dx\) [408]

3.5.8.1 Optimal result
3.5.8.2 Mathematica [A] (verified)
3.5.8.3 Rubi [A] (verified)
3.5.8.4 Maple [A] (verified)
3.5.8.5 Fricas [A] (verification not implemented)
3.5.8.6 Sympy [F(-1)]
3.5.8.7 Maxima [B] (verification not implemented)
3.5.8.8 Giac [F]
3.5.8.9 Mupad [F(-1)]

3.5.8.1 Optimal result

Integrand size = 25, antiderivative size = 96 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \, dx=\frac {2 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \]

output
2*a^(3/2)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1 
/2)*sec(d*x+c)^(1/2)/d+2*a^2*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c) 
)^(1/2)
 
3.5.8.2 Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.84 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \, dx=\frac {2 a^2 \left (\sqrt {1-\sec (c+d x)}+\arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \sqrt {\sec (c+d x)}\right ) \sin (c+d x)}{d \sqrt {-1+\cos (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(3/2),x]
 
output
(2*a^2*(Sqrt[1 - Sec[c + d*x]] + ArcSin[Sqrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c 
 + d*x]])*Sin[c + d*x])/(d*Sqrt[-1 + Cos[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x 
])])
 
3.5.8.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4752, 3042, 4300, 27, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\sec (c+d x) a+a)^{3/2}}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4300

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (2 a \int \frac {1}{2} \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (a \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {2 a \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )\)

input
Int[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(3/2),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a^(3/2)*ArcSinh[(Sqrt[a]*Tan[c + 
 d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d* 
x])/(d*Sqrt[a + a*Sec[c + d*x]]))
 

3.5.8.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4300
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[b^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)* 
((d*Csc[e + f*x])^n/(f*n)), x] - Simp[a/(d*n)   Int[(a + b*Csc[e + f*x])^(m 
 - 2)*(d*Csc[e + f*x])^(n + 1)*(b*(m - 2*n - 2) - a*(m + 2*n - 1)*Csc[e + f 
*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] 
 && (LtQ[n, -1] || (EqQ[m, 3/2] && EqQ[n, -2^(-1)])) && IntegerQ[2*m]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.5.8.4 Maple [A] (verified)

Time = 2.10 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.64

method result size
default \(\frac {a \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}+\sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-2 \cot \left (d x +c \right )+2 \csc \left (d x +c \right )\right )}{d}\) \(157\)

input
int((a+a*sec(d*x+c))^(3/2)*cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/d*a*cos(d*x+c)^(1/2)*(a*(1+sec(d*x+c)))^(1/2)*(arctan(1/2*(-cos(d*x+c)+s 
in(d*x+c)-1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(-1/(cos(d*x+c)+1)) 
^(1/2)+(-1/(cos(d*x+c)+1))^(1/2)*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos 
(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))-2*cot(d*x+c)+2*csc(d*x+c))
 
3.5.8.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 298, normalized size of antiderivative = 3.10 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \, dx=\left [\frac {4 \, a \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{2 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {2 \, a \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{d \cos \left (d x + c\right ) + d}\right ] \]

input
integrate((a+a*sec(d*x+c))^(3/2)*cos(d*x+c)^(1/2),x, algorithm="fricas")
 
output
[1/2*(4*a*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d 
*x + c) + (a*cos(d*x + c) + a)*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*s 
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c 
))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c) 
^2)))/(d*cos(d*x + c) + d), (2*a*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*s 
qrt(cos(d*x + c))*sin(d*x + c) + (a*cos(d*x + c) + a)*sqrt(-a)*arctan(2*sq 
rt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x 
+ c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c) + d)]
 
3.5.8.6 Sympy [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))**(3/2)*cos(d*x+c)**(1/2),x)
 
output
Timed out
 
3.5.8.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 274 vs. \(2 (82) = 164\).

Time = 0.39 (sec) , antiderivative size = 274, normalized size of antiderivative = 2.85 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \, dx=\frac {\sqrt {2} {\left (\sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + \sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + 8 \, a \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} \sqrt {a}}{4 \, d} \]

input
integrate((a+a*sec(d*x+c))^(3/2)*cos(d*x+c)^(1/2),x, algorithm="maxima")
 
output
1/4*sqrt(2)*(sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2* 
c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2 
) - sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2* 
sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt( 
2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*c 
os(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a*log( 
2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d* 
x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 8*a*sin(1/2*d*x + 1/2*c 
))*sqrt(a)/d
 
3.5.8.8 Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(3/2)*cos(d*x+c)^(1/2),x, algorithm="giac")
 
output
sage0*x
 
3.5.8.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \, dx=\int \sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

input
int(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(3/2),x)
 
output
int(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(3/2), x)